Syndiotactic Polypropylene Synthesis Essay

Anthony J. O'Lenick, Jr., asks Thomas O'Lenick, a doctoral candidate in polymer chemistry at the University of Tennessee, to explain the difference between isotactic, syndiotactic and atactic in reference to polymers. Thomas O'Lenick explains:

Tacticity is a term used to describe the way pendent groups on a polymer chain are arranged on a polymer backbone. The tacticity of a polymer is determined by what side of the polymer chain the pendant groups are on. This relative position can have dramatic effects on the physical properties of the polymer. Tacticity only arises when there is an asymmetric carbon in the polymer chain backbone. Typically, this occurs in free radical polymerization of vinyl monomers (CH2CHX). When a non-reacted monomer adds to the end of the polymer chain, the monomer can either join the pendant group on the same side as all of the other pendant groups, or it can join the pendant group on the side away from the nearest pendant group. If the monomer adds to the polymer backbone with the pendant group (X) on the same as the previous pendant group, this is called isotactic. If the monomer adds where the pendant group adds to the opposite side of the polymer backbone, it is called syndiotactic. Isotactic and syndiotactic are illustrated in Figure 1.  If there is no order to the way the pendant group adds, (completely random) the polymer is said to be atactic.

When designing a polymer, a good polymer chemist has to consider the properties he/she wants to the polymer to exhibit. There are many aspects to controlling the physical properties of the polymer. Isotactic and syndiotactic polymers provide long-range order, which leads to higher crystallinity in the polymer chain. Polypropylene is a great example of how tacticity has a dramatic effect on the physical properties of the polymer. Atactic polypropylene has little order in the polymer backbone and is amorphous. Most commonly, amorphous polypropylene is called linear low-density polypropylene (LLDPE). This polymer is clear and used in soda bottles. Isotactic polypropylene (HDPE) has long-range order, which adds mechanical strength and crystallinity. This version of polypropylene is used in laundry detergent bottles and is not transparent like LLDPE. This property of polypropylene was so important that Ziegler and Natta co-invented a catalyst that can be used in the synthesis of isotactic polypropylene. This catalyst changed the way we live our everyday lives and produced a billion dollar industry.

 

Close

Z-Cote LSA

Z-COTE LSA provides broad-spectrum protection from long wave UVA rays and medium wave UVB rays by physically scattering, reflecting and absorbing solar radiation.

INCI

  • Zinc Oxide
  • Triethoxycaprylylsilane

Functions

Claims

  • UVA Protection
  • UVB Protection
  • 1.

    Müller AJ, Balsamo V, Arnal ML (2005) Adv Polym Sci 190:1–63CrossRefGoogle Scholar

  • 2.

    Abetz V, Hadjichristidis H, Iatou H, Pitsikalis M, Simon PFW (2005) Adv Polym Sci 189:1–124CrossRefGoogle Scholar

  • 3.

    He WN, Xu JT (2012) Prog Polym Sci 37:1350–1400CrossRefGoogle Scholar

  • 4.

    Lin EK, Gast AP (1996) Macromolecules 29:4432–4441CrossRefGoogle Scholar

  • 5.

    Zheng JX, Xiong HM, Chen WY, Lee KM, Horn RMV, Quirk RP, Lotz B, Thomas EL, Shi AC, Cheng SZD (2006) Macromolecules 39:641–650CrossRefGoogle Scholar

  • 6.

    Vilgis T, Halperin A (1991) Macromolecules 24:2090–2095CrossRefGoogle Scholar

  • 7.

    Richter D, Schneiders D, Monkenbusch M, Willner L, Fetters LJ, Huang JS, Lin M, Mortensen K, Farago B (1997) Macromolecules 30:1054–1068CrossRefGoogle Scholar

  • 8.

    Chen WY, Li CY, Zheng JX, Huang P, Zhu L, Ge Q, Quirk RP, Lotz B, Deng LF, Wu C, Thomas EL, Cheng SZD (2004) Macromolecules 37:5292–5299CrossRefGoogle Scholar

  • 9.

    Horn RMV, Zheng JX, Sun HJ, Hsiao MS, Zhang WB, Dong XH, Xu JT, Thomas EL, Lotz B, Cheng SZD (2010) Macromolecules 43:6113–6119CrossRefGoogle Scholar

  • 10.

    Soto AP, Gilroy JB, Winnik MA, Manners I (2010) Angew Chem Int Ed 49:8220–8223CrossRefGoogle Scholar

  • 11.

    Wang X, Guerin G, Wang H, Wang Y, Manners I, Winnik MA (2007) Science 317:644–647CrossRefGoogle Scholar

  • 12.

    Massey JA, Temple K, Cao L, Rharbi Y, Raez J, Winnik MA, Manners I (2000) J Am Chem Soc 122:11577–11584CrossRefGoogle Scholar

  • 13.

    Gilroy JB, Gadt T, Whittell GR, Chabanne L, Mitchels JM, Richardson RM, Winnik MA, Manners I (2010) Nature Chem 2:566–570CrossRefGoogle Scholar

  • 14.

    Cao L, Manners I, Winnik MA (2002) Macromolecules 35:8258–8260CrossRefGoogle Scholar

  • 15.

    Gilroy JB, Rupar PA, Whittell GR, Chabanne L, Terrill N, Winnik MA, Manners I, Richardson RM (2011) J Am Chem Soc 133:17056–17062CrossRefGoogle Scholar

  • 16.

    Shen L, Wang H, Geurin G, Wu Q, Manners I, Winnik MA (2008) Macromolecules 41:4380–4389CrossRefGoogle Scholar

  • 17.

    Mihut AM, Chiche A, Drechsler M, Schmalz H, Cola ED, Krausch G, Ballauff M (2009) Soft Matter 5:208–213CrossRefGoogle Scholar

  • 18.

    Mihut AM, Crassous J, Schmalz H, Drechsler M, Ballauff M (2012) Soft Matter 8:3163–3173CrossRefGoogle Scholar

  • 19.

    Mihut AM, Crassous J, Schmalz H, Ballauff M (2010) Colloid Polym Sci 288:573–578CrossRefGoogle Scholar

  • 20.

    Mihut AM, Drechsler M, Muller M, Ballauff M (2010) Macromol Rapid Commun 31:449–453CrossRefGoogle Scholar

  • 21.

    Schmalz J, Karg M, Hellweg T, Schmalz H (2011) ACS Nano 5:9523–9534CrossRefGoogle Scholar

  • 22.

    Schmalz H, Schmalz J, Drechsler M, Yuan J, Walther A, Schweimer K, Mihut AM (2008) Macromolecules 41:3235–3242CrossRefGoogle Scholar

  • 23.

    Lazzari M, Scalarone D, Vazquez CV, Quintela MAL (2008) Macromol Rapid Commun 29:352–357CrossRefGoogle Scholar

  • 24.

    Lazzari M, Quintela MAL (2009) Macromol Rapid Commun 30:1785–1791CrossRefGoogle Scholar

  • 25.

    Zhang L, Wang LQ, Wang H, Tu K (2006) Biomacromolecules 7:2492–2500CrossRefGoogle Scholar

  • 26.

    Petzetakis N, Dove AP, Reilly RKO (2011) Chem Sci 2:955–960Google Scholar

  • 27.

    Fu J, Luan B, Yu X, Cong Y, Li J, Pan CY, Han YC, Yang YM, Li BY (2004) Macromolecules 37:976–986CrossRefGoogle Scholar

  • 28.

    Du ZX, Xu JT, Fan ZQ (2007) Macromolecules 40:7633–7637CrossRefGoogle Scholar

  • 29.

    Du ZX, Xu JT, Fan ZQ (2008) Macromol Rapid Commun 29:467–471CrossRefGoogle Scholar

  • 30.

    Xu JT, Jin W, Liang GD, Fan ZQ (2005) Polymer 46:1709–1716CrossRefGoogle Scholar

  • 31.

    Xu JT, Fairclough JPA, Mai SM, Ryan AJ (2003) J Mater Chem 13:2740–2748CrossRefGoogle Scholar

  • 32.

    Yin LG, Hillmyer MA (2011) Macromolecules 44:3021–3028CrossRefGoogle Scholar

  • 33.

    Cao WP, Bai Y, Chen EQ, Zhou QF (2005) Chin J Polym Sci 23:275–284CrossRefGoogle Scholar

  • 34.

    Chen YF, Zhang FB, Xie XM, Yuan JY (2007) Polymer 48:2755–2761CrossRefGoogle Scholar

  • 35.

    Arnal ML, Matos ME, Morales RA, Santana OO, Muller AJ (1998) Macromol Chem Phys 199:2275–2288CrossRefGoogle Scholar

  • 36.

    Langhe DS, Hiltner A, Baer E (2011) Polymer 52:5879–5889CrossRefGoogle Scholar

  • 37.

    Langhe DS, Hiltner A, Baer E (2011) J Polym Sci Pt B Polym Phys 49:1672–1682Google Scholar

  • 38.

    Tzeng FY, Lin MC, Wu JY, Kuo JC, Tsai JC, Hsiao MS, Chen HL, Cheng SZD (2009) Macromolecules 42:3073–3085CrossRefGoogle Scholar

  • 39.

    Ruokolainen J, Mezzenga R, Fredrickson GH, Kramer EJ, Hustad PD, Coates GW (2005) Macromolecules 38:851–860CrossRefGoogle Scholar

  • 40.

    Tsai JC, Kuo JC, Ho RM, Chung TM (2006) Macromolecules 39:7520–7526CrossRefGoogle Scholar

  • 41.

    Kuo JC, Lin WF, Yu CH, Tsai JC, Wang TC, Chung TM, Ho RM (2008) Macromolecules 41:7967–7977CrossRefGoogle Scholar

  • 42.

    Duran H, Steinhart M, Butt HJ, Floudas G (2011) Nano Lett 11:1671–1675CrossRefGoogle Scholar

  • 43.

    Kailas L, Vasilev C, Audinot JN, Migeon HN, Hobbs JK (2007) Macromolecules 40:7223–7230CrossRefGoogle Scholar

  • 44.

    Radulescu A, Mathers R, Coates GW, Richter D, Fetters LJ (2007) Macromolecules 37:6962–6971CrossRefGoogle Scholar

  • 45.

    Uriguen JI, Bremer L, Mathot VBF, Groeninckx G (2004) Polymer 45:5961–5968CrossRefGoogle Scholar

  • 46.

    Ibarretxe J, Groeninckx G, Bremer L, Mathot VBF (2009) Polymer 50:4584–4595CrossRefGoogle Scholar

  • 47.

    Li T, Wang WJ, Liu R, Liang WH, Zhao GF, Li ZY, Wu Q, Zhu FM (2009) Macromolecules 42:3804–3810CrossRefGoogle Scholar

  • 48.

    Zhao Y, Shi XB, Gao HY, Zhang L, Zhu FM, Wu Q (2012) J Mater Chem 22:5737–5745CrossRefGoogle Scholar

  • 49.

    Wang WJ, Liu R, Li ZY, Meng CF, Wu Q, Zhu FM (2010) Macromol Chem Phys 211:1452–1459CrossRefGoogle Scholar

  • 50.

    Tian J, Hustad PD, Coates GW (2001) J Am Chem Soc 123:5134–5135CrossRefGoogle Scholar

  • 51.

    Mitani M, Furuyama R, Mohri JI, Saito J, Ishii S, Terao H, Kashiwa N, Fujita T (2002) J Am Chem Soc 124:7888–7889CrossRefGoogle Scholar

  • 52.

    Cherian AE, Lobkovsky EB, Coates GW (2005) Macromolecules 38:6259–6268CrossRefGoogle Scholar

  • 53.

    Makio H, Terao H, Iwashita A, Fujita T (2011) Chem Rev 111:2363–2449CrossRefGoogle Scholar

  • 54.

    Hustad PD, Tian J, Coates GW (2002) J Am Chem Soc 124:3614–3621CrossRefGoogle Scholar

  • 55.

    Cao W, Tashiro K, Hanesaka M, Takeda S, Masunaga H, Sasaki S, Takata M (2009) J Phys Chem B 113:2338–2346CrossRefGoogle Scholar

  • 56.

    Sun J, Hong Z, Yang L, Tang Z, Chen X, Jing X (2004) Polymer 45:5969–5977CrossRefGoogle Scholar

  • 57.

    Hamley IW, Castelletto V, Castillo RV, Muller AJ, Martin CM, Pollet E, Dubois P (2005) Macromolecules 38:463–472CrossRefGoogle Scholar

  • 58.

    Nojima S, Ito K, Ikeda H (2007) Polymer 48:3607–361CrossRefGoogle Scholar

  • 0 thoughts on “Syndiotactic Polypropylene Synthesis Essay

    Leave a Reply

    Your email address will not be published. Required fields are marked *